Benchmarking a Recurrent Linear GP Model on Prediction and Control Problems
نویسندگان
چکیده
In this work, a recurrent linear GP model is designed by introducing the concept of internal state to the standard linear Genetic Programming (GP), so that it has the capacity of working on temporal sequence data. We benchmarked this model over four standard prediction and control problems, which include generic even parity problem, sun spot series prediction, Lorenz Chaotic time series prediction and pole balance control problem. From the experimental results, the recurrent linear GP model appears to be very competitive compared to those algorithms relying on spatial reasoning of the temporal problem.
منابع مشابه
Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملA genetic programming model for bankruptcy prediction: Empirical evidence from Iran
Prediction of corporate bankruptcy is a phenomenon of increasing interest to investors/creditors, borrowing firms, and governments alike. Timely identification of firms’ impending failure is indeed desirable. By this time, several methods have been used for predicting bankruptcy but some of them suffer from underlying shortcomings. In recent years, Genetic Programming (GP) has reached great att...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملApplication of Genetic Programming to Modeling and Prediction of Activity Coefficient Ratio of Electrolytes in Aqueous Electrolyte Solution Containing Amino Acids
Genetic programming (GP) is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. In this paper the systems containing amino ac...
متن کاملPrediction of groundwater level Sharif Abad catchment of Qom using WANN and GP models
In this study is predicted the groundwater level of Sharif Abad catchment using some artificial intelligence models. For this purpose used of monthly groundwater levels for modeling in the three observed wells located in the Sharif Abad watershed of Qom. To compare the results of the hybrid model of wavelet analysis-neural network (WNN), genetic programming (GP) multiple linear regression (MLR)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006